To address astrobiology, we must first tackle three fundamental questions:

1. How does life begin & evolve?
2. Does life exist elsewhere in the universe?
3. What is the future of life on Earth & beyond?

Penelope J. Boston
Director, NASA Astrobiology Institute
NASA Ames Research Center
Moffett Field, CA 94035
Sulfuric acid (pH=0), H₂S, CO, & other poisonous gases
Cueva de Villa Luz, Tabasco, Mexico

-3°C, poisonous SO₂ & other gases
Fumarolic Ice Caves, Mt. Rainier, WA

40-60°C, 100% Rh
Naica Caves, Chihuahua, Mexico

World’s largest cave decoration, 18.5km & going
Snowy River, Ft. Stanton Cave, NM, Image, BLM
Astrobiology

Planetary Science Division (PSD), Research & Analysis Program
Astrobiology Program

Senior Scientist: Voytek

Habitable Worlds
PO: Schulte

PSTAR:
Program Officer, Voytek

Exo-Evo
PO: New

PICASSO
PO: New

NExSS:
NASA Exoplanet System Science
PO: Voytek
Dir gelino, Del Genio, Batalha

NAI
PO Voytek
Inst Dir: Boston
NAI Mission Statement

5 Elements

Train the Next Generation of Astrobiologists

Provide Leadership for NASA Space Missions

Collaborative, Interdisciplinary Research

Education and Outreach

Information Technology for Research

In Transition...
NAI: A Virtual Institute Without Walls

- Competitively-selected science teams, each a consortium (currently 12 teams)
- ~600 members at ~100 participating institutions
 - ~320 “senior” scientists
 - ~280 postdocs and students
 - ~20 members of the US National Academy of Sciences
- Managed/integrated by a central office at NASA Ames Research Center

CAN 6 TEAMS
- Massachusetts Institute of Technology
- University of Illinois at Urbana-Champaign
- University of Southern California
- University of Wisconsin
- VPL at University of Washington
- ROTATING OFF THIS YEAR

CAN 7 TEAMS
- NASA Goddard Space Flight Center
- NASA Ames Research Center
- NASA Jet Propulsion Laboratory
- SETI Institute
- University of Colorado in Boulder
- University of California, Riverside
- University of Montana in Missoula
Solicitation Number: **NNH17ZDA003C**

CAN Release Date: February 27, 2017

Preproposal Conference - March 10, 2017
11 AM Pacific Time (2 PM Eastern Time)

Opportunity to better understand the intent, scope, and selection criteria of this CAN.

Step-1 Proposal Due: April 12, 2017

Step-2 Proposals Due: July 6, 2017

Dr. Mary Voytek, Senior Scientist for Astrobiology/ NAI Program Scientist
Science Mission Directorate NASA Headquarters
300 E Street SW
Washington, DC 20546

Phone: (202) 358-1577
E-mail: mary.voytek-1@nasa.gov
. . to develop, refine and combine 1-D and 3-D climate, photochemical, radiative transfer, atmospheric escape, planetary interior, biogeochemical, biological productivity, vegetation, orbital evolution and planet formation models and,

. . as input to these models, to obtain laboratory, field and observational data from the stellar, planetary and biological sciences, and

. . use these results to recognize habitable worlds and to discriminate between the spectra of planets with and without life, by understanding the signatures of life in the context of their planetary environment
• Study the general physical principles underlying the emergence of life – a mathematical basis for the emergence of evolvable dynamical processes

• Investigate Life before the Last Universal Common Ancestor (LUCA) – the “progenote”, a hypothetical communal state of gene sharing that preceded cellular life, using detailed and sophisticated analyses of core translational machinery

• Examine how environmental conditions affect the speed with which evolutionary adaptation takes place, i.e., how the ability to evolve itself evolves

• Understand the emergence of cellular machinery following the progenote state – focusing on mining Archaeal genomes, searching for the ancestors at the root of the Eukarya-Archaeal branching and determining how genomes became more stable over evolutionary time
. . . to develop, using Mars analog environments, new approaches for the detection of biomolecules, and increase our knowledge of biomolecule-rock substrate interactions.

. . . to develop a mechanistic understanding of the proxies that have been used to interpret ancient rocks and ancient microbial ecology – and to develop new proxies focusing on three mineral groups: clays, Fe-Si oxides, and carbonates.

. . . to use the ancient rock record on Earth, largely using isotopic tracers, to understand the co-evolution of the environment and a diverse range of microbial metabolisms – providing an essential interpretive context for studies of ancient rocks on Mars.
What spectral/optical signals indicate the presence of biomass?

What kind of metabolic activities can be detected/measured in situ?

What is the limit of resolution of biomass detection in deep subsurface samples?

Can one distinguish living from dead biomass in situ?
Questions to be addressed include:

• What is the relationship between genomic and morphological complexity?

• What caused large Neoproterozoic (1000-542 million years ago) perturbations of the carbon cycle, and how do they relate to the emergence of biological complexity?

• What principles and mechanisms determine the preservation of organic matter and fossils, through time and in relation to ocean-atmosphere chemistry?

• What taphonomic insights drawn from these studies apply elsewhere, particularly Gale Crater on Mars?
The Signatures of Habitability: Mars Ancient Mineral Record and Terrestrial Aerial Imagery

Taphonomomic Windows & Biosignature Preservation: Earth Analogs

Environmental Control on the Survival & Preservation Potential of Organic Molecules

Adaptive Detection of Biosignatures: Applying Data Fusion, Novelty Detection, and Autonomous Detection of Biogenicity

“How do we identify and cache the most valuable samples?”

Develop a roadmap to biosignature exploration in support of NASA’s decadal plan for the search for life on Mars.

PI is Nathalie Cabrol
How can geochemical disequilibria drive the emergence of metabolism and ultimately generate observable signatures on icy worlds?
Did delivery of exogenous organics and water enable the emergence and evolution of life? Why is Earth wet and alive?

- What material was delivered?
- How was prebiotic matter synthesized and processed?
- What dynamical mechanisms delivered these primitive bodies?
- Can we find evidence for habitability elsewhere in the present day Solar System?
- Develop instrument protocols for future in situ investigations.

Origins and Evolution of Organics and Water in Planetary Systems

PI is Mike Mumma

A. Natal Regions

- Eagle Nebula
- Eta Carina
- Interstellar Medium
- HH30

The Messengers

- Comet Hale Bopp
- Comet Hartley 2
- Carbonaceous Meteorite
- Extraterrestrial Material

Modern Worlds

- Mars
- Earth
- Evolved Bodies
- Exoplanets

B. Searching the Skies

- ALMA
- NASA InfraRed Telescope Facility

The Team’s Laboratory Facilities

- Synthesis & Simulations
- Cosmic Ice Facility
- Cosmic Dust Facility
- Stable Isotopes
- Molecular Distribution

- Organic Sample Analysis
- Advanced Models, Chemical & Spectral
- Ultra High-Res Mass Spectrometry
- Laser Mass Spectrometry

Development

- Keck Observatory
- James Webb Space Telescope
- Terahertz Spectroscopy
to understand the chemical processes at every stage in the evolution of organic chemical complexity, from quiescent regions of dense molecular clouds, through all stages of cloud collapse, protostellar disk, and planet formation, and ultimately to the materials that rain down on planets - and to understand how these depend on environmental parameters like the ambient radiation field and the abundance of H2O.
Alternative Earths: Explaining Persistent Inhabitation on a Dynamic Early Earth

How has Earth remained persistently inhabited through most of its dynamic history, and how do those varying states of inhabitation manifest in the atmosphere?

<table>
<thead>
<tr>
<th>Alternative Earth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Earth 1</td>
<td>Resolve when oxygenic photosynthesis first left traces in Earth’s atmosphere and whether (and, if so, why) there was a lag between oxygen’s first biological production and its persistent accumulation.</td>
</tr>
<tr>
<td>Alternative Earth 2</td>
<td>Determine whether Earth’s surface underwent a unidirectional oxygen rise—as typically envisioned—or whether (and why) this early history was characterized by a series of rises and falls.</td>
</tr>
<tr>
<td>Alternative Earth 3</td>
<td>Determine whether surface oxygen concentrations maintained sufficiently low levels, for perhaps a billion years of Earth’s history, to play a direct role in when animals first hit the scene and diversified.</td>
</tr>
</tbody>
</table>
What forces bring about major transitions in the evolution of biocomplexity?

Organized around five questions related to major transitions in the history of Life:

- How do enzymes and metabolic networks evolve?
- How did the eukaryotic cell come to be?
- How do symbioses arise?
- How does multicellularity evolve? and
- How do pleiotropy, epistasis and mutation rate constrain the evolution of novel traits?

A unifying theme underlying these questions is: how do cooperative vs. competitive interactions play out in driving major transitions that occur when independently replicating entities combine into a larger, more complex whole?
How do the mechanisms of low temperature water/rock reactions control the distribution, activity, and biochemistry of life in rock-hosted systems?

- Defining the pathways that control how energy is released from ultramafic rocks as they react with low-temperature fluids,
- Identifying and interpreting the process rates and ecology in systems undergoing water/rock reactions,
- Quantifying the geochemical and mineralogical progression of water/rock reactions in the presence and absence of biology,
- Characterizing microbial communities within rock-hosted ecosystems and evaluating their metabolic activities,
- Developing and testing predictive models of biological habitability during water/rock interaction.
ASSOCIATE PARTNERS:
- Australian Centre for Astrobiology
- Centro de Astrobiología (Spain)

AFFILIATE PARTNERS
- Astrobiology Society of Britain
- Canadian Astrobiology Network
- European Exo/Astrobiology Network Association (EANA)
- Helmholtz Alliance: Planetary Evolution and Life (Germany)
- Instituto de Astrobiología Colombia
- Nordic Network of Astrobiology
- Russian Astrobiology Center
- Société Française d’Exobiologie
- Sociedad Mexicana de Astrobiología
- UK Centre for Astrobiology
- USP Research Unit in Astrobiology (NAP-Astrobio) (San Paolo)
ASSOCIATE PARTNERS:
- Centro de Astrobiología (CAB)
- Australian Centre for Astrobiology (ACA)

AFFILIATE PARTNERS:
- Astrobiology Society of Britain (ASB)
- Canadian Astrobiology Network (CAN)
- European Exo/Astrobiology Network Association (EANA)
- Helmholtz Alliance: Planetary Evolution and Life
- Instituto de Astrobiología Colombia (IAC)
- Nordic Network of Astrobiology
- Russian Astrobiology Center (RAC)
- Société Française d’Exobiologie (SFE)
- Sociedad Mexicana de Astrobiología (SOMA)
- UK Centre for Astrobiology (UKCA)
- USP Research Unit in Astrobiology
Other NAI Programs

- Minority Institution Research Support Program (*for faculty*)
- Postdoctoral Fellowship Program (*for postdoctoral scholars*)
- The Lewis and Clark Fund for Exploration and Field Research in Astrobiology (*for graduate students & postdocs*)
- Early Career Collaboration Award (*for graduate students & postdocs*)
- Meeting and Workshop Support
- Education and Public Outreach in Transition…..
Training the next generation

Resources:
- The Astrobiology Primer v2.0
- Astrobiology Career Path Suggestions, https://astrobiology.nasa.gov/career-path-suggestions/

Astrobiology Summer Schools/Courses:
- Santander, Geobiology Course, MBL Microbial Diversity Course

Student Support to Conferences:
- AbSciCon, April 2017, Phoenix
- AbGradCon, June 2017, abgradcon.com

Funding Opportunities:
- NASA Postdoctoral Program
- Astrobiology Early Career Collaboration Awards
- Lewis and Clark Fund for Field Research

SAGANET, http://saganet.org
- Science outreach
- “Talk to an Astrobiologist” Series
- Astrobiology Book Club
Minority Institution Research Support Program (MIRS)

- Started in 2002 to increase the number of:
 1) faculty from Minority Serving Institutions (MSIs) actively and competitively engaged in astrobiology research and related pursuits,
 2) students from underrepresented groups pursuing careers in astrobiology
- Supports MSI faculty [summer] sabbaticals in the laboratories of NASA Astrobiology Program investigators and follow-up funding for student stipends, materials, travel, etc.

- Sabbatical opportunities for MI faculty with Astrobiology researchers
- 37 MIRS Fellows since 2003
- Collectively, these NAI-MIRS fellows have:
 - published more than 55 research papers and abstracts in astrobiology, with the majority containing student authors
 - directly impacted ~70 students each (on average) with either new research or curriculum
101 NPPs since 2000

Where are they now...

- 49 Faculty
- 5 hired by NASA
- 10 were NPP Advisors
- 13 are on NAI teams
- 4 have been Exo/ASTEP/ASTID PIs
- 18 have research or university positions
- 1 Policy Fellow and 1 Journal Manager

Bold = NPP advisor

* = Current NAI Team member

Faculty Hired by NASA
NASA and the Navajo Nation

• Began in 2005 with a question: are you interested in partnering with NASA on educational programs?
• Co-developed two educator guides and hosted a summer camp
• “Dual-learning” environment enables scientific and cultural knowledge to co-exist without one dominating the other
Innovative Products: Astrobiology Graphic Novels

- Astrobiology Program leadership at NASA HQ collaborating with an artist to produce a series of graphic novels.
- Issue #1 covers the history of Astrobiology
- Issue #2 covers the history of Mars Exploration
- Issue #3 covers Astrobiology’s relationship to Solar System exploration missions
- Issue #4 covers field sites where astrobiologists are studying extreme environments
• Encourages career scientists to develop the skills to deliver engaging scientific presentations to a public audience

• FameLab started in UK in 2005. NASA partnered with the British Council in 2012 to run FameLab in the US.

• US finals on April 2014 in DC at National Geographic had 11 career scientists competing to advance to international finals
The Lewis & Clark Fund for Exploration and Field Research in Astrobiology

Partnership between American Philosophical Society and NAI

Provides small grants (up to $5K) to graduate students, postdocs, and early career scientists for astrobiology field research around the world
Integrating Research Themes of the NAI

Serpentinizing Systems
(Univ. of Colorado, USC, SETI Inst., JPL, U.C.-Riverside, Univ. of Montana, Univ. of Wisconsin, Univ. of Illinois)

Habitable Planetary States, the Evolution of Microbial Life, and their Astronomical Biosignatures
(U.C.-Riverside, Univ. of Montana, Univ. of Washington, Univ. of Wisconsin, MIT, SETI Inst., JPL, Univ. of Colorado, USC)

Planetary Inventory of Organics and Water, and the Origin of Life
(GSFC, U.C.-Riverside, MIT, Univ. of Illinois, NASA Ames)

Environmental Change and Biosignatures
(SETI Inst., Univ. of Wisconsin, Univ. of Colorado, USC, U.C.-Riverside, MIT, others)

GeoBioCell Applications
(Univ. of Illinois, Univ. of Montana, USC, Univ. of Wisconsin, JPL, Univ. of Colorado, U.C.-Riverside, GSFC)

Evolution of Complex Life
(Univ. of Montana, MIT, SETI Inst., U.C.-Riverside, USC, Univ. of Colorado)
Collaborative Technologies for Astrobiology: Information Technology Working Group (ITWG)

- Composed of IT enthusiasts from each team
- Meets virtually once a month
- Share lessons learned and knowledge
- Test hardware, software and integration
- POCs for virtual events
- Provides local training, support, expertise and feedback within the system
- Build organizational structures within NAI to promote an optimal interaction between centralization and autonomy
Information Technology Working Group (ITWG)

APPROACH

- Provide a suite of tools
- Standards based when possible
- Cross platform and mobile support
- Integrate multiple technologies for better solutions
- Transparent, reliable technologies
- Heuristic evaluations (usability)
 - **Reduction in help calls**
- Simple training and documentation
- We live in our community, we use our tools
 - Allows for iterative improvements
 - Deep understanding of culture and content
 - Flexibility
- **Empower the end-users**
NAI Virtual Collaboration

- **Multipoint Video/Telephone Connections**
 - Integrates up to 30 HD video connections and 60 phone lines

- **Real-time meeting applications**
 - Integrates video, audio and supports high resolution screen sharing, chats, polls, and interactive features.

- **Integrated web technologies**
 - Newsletters
 - Directories and reports
 - Online communities

Combine to run…

- Seminars
- Workshops
- Large scale meetings
- Small group meetings
- Collaborative document writing
- Training
- Remote courses
- Journal clubs
- Public talks

Technology is not enough, *the human element is crucial*
NAI: Workshop Without Walls
12+ Virtual Workshops

ARC showing 6 videocon sites

Rensselaer Polytechnic Institute

University of Hawaii

Carnegie Institution of Washington

[Images of workshop participants and presentations]
“I congratulate you on the format of the conference... it’s the format of the future, so you’re way ahead.”

“...I had to teach during most of the conference... I did wow my 7th graders with a couple of minutes of a live science conference for the fun of it.”

“...having workshops like these which are very interactive, and accessible to virtually anyone who is interested encourages collaboration and a push towards new frontiers of knowledge collectively.”

“What I liked most was: No walls! It was great to see so many people participating from around the globe. It was also really wonderful to have access to so many great talks without having to leave my home institution.”

“I had a great experience I will remember for the rest of my life.”

Workshop became a subject for science bloggers in real time: http://pandasthumb.org/archives/2010/11/report-on-virtu.html
A quarterly newsletter providing information about astrobiology events and opportunities around the world to the international astrobiology community

- Content provided by the community
- Distribution ~5000 world-wide

Topic Headings
- Conferences, Field Trips, and Workshops
- Student & Early Career Opportunities
- Funding Opportunities
- Other Opportunities
- Meeting Reports
NAI Website
http://astrobiology.nasa.gov/nai

Intended for:
- Science-interested public
- Educators/students
- NAI researchers and the astrobiology science community
LOC is the nation’s oldest federal cultural institution
- Serves as research arm of Congress
- Largest library in the World

Chair conducts research at the interface of astrobiology and its humanistic aspects, particularly its societal implications
Luis Campos

Oct. 3, 2016 – Sept. 2018

A historian of science, Campos is currently Associate Professor of History at The University of New Mexico. He is the author of “Radium and the Secret of Life” and is co-editor of “Making Mutations: Objects, Practices, Contexts.”

While at the Kluge Center, Campos will use the Library collections to examine the intersection between astrobiology and synthetic biology. Synthetic biology, according to Campos, seeks to engineer novel forms of life. Astrobiology is interested in discovering novel forms of life.
QUESTIONS?